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Received 28 May 1997

Abstract. We derive a variational characterization for the chemical potential in the Thomas–
Fermi model of atoms and molecules. We use this variational principle to obtain accurate upper
bounds for the chemical potentialεF(N,Z) as a function of the atomic numberZ and the number
of electronsN . In particular we study the behaviour ofεF(N,Z) for a weakly ionized atom.

1. Introduction

Variational principles are often good alternative procedures for estimating physical
quantities. The purpose of this paper is to give a variational principle for the chemical
potential in the Thomas–Fermi model of atoms and molecules. The Thomas–Fermi (TF)
model [1, 2] is defined by the energy functional

E(ρ) = 3

5

∫
ρ5/3(x) d3x −

∫
V (x)ρ(x) d3x +D(ρ, ρ) (1.1)

where

D(ρ, ρ) = 1

2

∫
ρ(x)|x − y|−1ρ(y) d3x d3y (1.2)

and

V (x) =
k∑

j=1

zj |x − Rj |−1. (1.3)

Throughout the paper we use units for whichh2(8m)−1(3/π)2/3 = 1 and|e| = 1, wheree
andm are the electron charge and mass, respectively, andh is Planck’s constant. In these
units, the Bohr radiusa0 ≡ h2/(4π2me2) ≈ 0.208 97. Herez1, . . . , zk > 0 are the charges
of k fixed nuclei located atR1, . . . , Rk. E(ρ) is defined for electronic densitiesρ(x) > 0
such that

∫
ρ d3x and

∫
ρ5/3 d3x are finite. The TF electronic energy forN (not necessarily

an integer) electrons is defined by

E(N) = min

{
E(ρ)

∣∣∣∣ ∫ ρ d3x = N
}
. (1.4)

It is known [3, 4] that forN 6 Z ≡∑k
j=1 zj there is a unique minimizingρ for (1.4). It is

the unique solution to the Thomas–Fermi equation

ρ(x)2/3 = max(ϕ + εF, 0) (1.5)
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586 R D Benguria and J M Yáñez

for someεF 6 0 and with

ϕ(x) = V (x)−
∫

ρ(y)

|x − y| d
3y. (1.6)

εF(N; z1, . . . , zk) is the chemical potential, i.e.

εF = dE

dN
. (1.7)

There is extensive literature on the TF model, and we refer the interested reader to two
review articles by Lieb [5] and Spruch [6] for details.

As we mentioned at the beginning, our interest here is in proving a variational
characterization of the chemical potentialεF. A minimax and a maximin principle
for εF were proven by Lieb and Simon (see [4], Theorems II.28 and II.29). In
short, their maximin principle reads as follows: letρ be an admissible density,
define φρ(x) =

∫
ρ(y)|x − y|−1 d3y; let T (ρ) = infx(ρ2/3(x) − φρ), then εF(N,Z) =

sup{T (ρ)| ∫ ρ d3x = N}. Their minimax principle is analogous with the operations on
x andρ reversed. These minimax principles are of the same type as Barta’s (or Duffin’s)
principle for the Schr̈odinger equation (see [7], pp 154–5). On the other hand, the variational
characterization we give here forεF is closer to the Rayleigh–Ritz principle for the ground-
state energy of the Schrödinger equation.

Our main results are the following two theorems.

Theorem 1 (atomic case,k = 1). Let D be the set of non-negative, radially symmetric,
bounded, subharmonic functionsg on <3 (i.e. with 1g > 0), with piecewise continuous
second derivatives and such that both1g and(1g)3/g2 are integrable. For anyg ∈ D let

I(g) =
(∫

1g d3x

)−1(
4πg∞(Z −N)− 4πg0Z − 1

108π2

∫
(1g)3

g2
d3x

)
(1.8)

whereg0 is the value ofg at the nucleus andg∞ is the limit of g(x) as |x| → ∞ (such a
limit always exists forg ∈ D).

Then

−εF(N,Z) = max{I(g)|g ∈ D} (1.9)

and the maximum is attained atĝ, the (unique up to a multiplicative constant) solution of
equation (2.15) below.

Theorem 2 (molecular case,k > 1). Let H be the set of non-negative, bounded,
subharmonic functionsg on <3 (i.e. with 1g > 0), with piecewise continuous second
derivatives and such that both1g and(1g)3/g2 are integrable. For anyg ∈ H let

I(g) =
(∫

1g d3x

)−1(
4πg∞(Z −N)− 4π

k∑
j=1

gjzj − 1

108π2

∫
(1g)3

g2
d3x

)
(1.10)

wheregj is the value ofg at the nucleus located atRj andg∞ is the limit of the spherical
average ofg(x), over a ball of radiusR enclosing all the nuclei, asR →∞ (such a limit
always exists forg ∈ H).

Then

−εF(N; z1, . . . , zk) = max{I(g)|g ∈ H} (1.11)

and the maximum is attained atĝ, the (unique up to a multiplicative constant) solution of
equation (2.15) below.
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Techniques similar to these used in the derivation of the variational principle for the
chemical potential of the Thomas–Fermi model have been used recently in the derivation
of analogous variational characterizations of other nonlinear eigenvalue problems. In
particular, they have been used to characterize the asymptotic speed of propagation of
fronts of the one-dimensional reaction–diffusion equation [8, 9]. They have also been used in
deriving a variational principle for the bifurcation branches of the nonlinear one-dimensional
eigenvalue problem−u′′ + N(u) = λu, with two point boundary conditions (hereN is a
rather general nonlinear term) [10].

The rest of the paper is organized as follows. In section 2, we prove theorem 1, and we
indicate how to proceed with the proof of theorem 2. In section 3, we study the behaviour
of the chemical potential for a weakly ionized atom. Finally in section 4 we give more
applications of our variational characterization ofεF(N,Z) for subneutral atoms.

2. Variational characterization for εF(N ,Z)

In this section we derive the variational characterization forεF. We will only give the details
for the atomic case. For molecules the derivation is analogous and we will just make a
few remarks and state the result in that case. Our starting point is the TF equation for the
electronic densityρ

ρ2/3 = max(φ − φ0, 0) (2.1)

where

φ(x) = Z

|x| −
∫

ρ(y)

|x − y| d
3y (2.2)

is the electrostatic potential and−φ0 = εF(N,Z) is the chemical potential.

Proof of theorem 1. Consider now any non-negative, radially symmetric functiong(x),
bounded, with piecewise continuous second derivatives and with non-negative Laplacian
(i.e. with 1g > 0, in other words a subharmonic function). Multiplying equation (2.1) by
1g we obtain

ρ2/31g > φ1g − φ01g. (2.3)

We will integrate equation (2.3) in the region between two concentric balls (Bε, of radius
ε, andBR of radiusR > ε) centred at the nucleus. Eventually we will letε go to zero and
R go to infinity. Thus we have∫

BR\Bε
ρ2/31g d3x >

∫
BR\Bε

φ1g d3x − φ0

∫
BR\Bε

1g d3x. (2.4)

Integrating the first term on the right-hand side of (2.4) by parts, using Green’s formula,
we can write ∫

BR\Bε
(φ1g) d3x =

∫
BR\Bε

(g1φ) d3x + IR − Iε (2.5)

where

IR =
∫
∂BR

(φ∇g − g∇φ) · dS (2.6)

and

Iε =
∫
∂Bε

(φ∇g − g∇φ) · dS. (2.7)
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The integralsIR and Iε are performed over the surfaces of the spheres of radiusR andε,
respectively. In both cases the normal is pointing outwards (in the radial directionr̂). Since
ε > 0, it follows from (2.2) that the first integral on the right-hand side of (2.5) may be
written as ∫

BR\Bε
(g1φ) d3x = 4π

∫
BR\Bε

(gρ) d3x. (2.8)

By Gauss’ theorem, the leading behaviour of the electric field−∇φ, at a distanceR from
the nucleus, asR goes to infinity is given by

−∇φ ≈ 1

R2
(Z −N)r̂ (2.9)

where r̂ is the radial unit vector. Since the functiong is radially symmetric, bounded and
subharmonic it has a limit asr = |x| goes to infinity. We will denote this limit byg∞.
Moreover,∇g goes to zero at infinity as 1/|x|2 or faster. Thus, using (2.9) we get from
(2.6) that

lim
R→∞

IR = 4πg∞(Z −N) (2.10)

(since dS = r̂R2 d� and
∫

d� = 4π ). On the other hand, asε goes to zero, it follows
from Gauss’ theorem again that at a distanceε from the nucleus

−∇φ ≈ 1

ε2
Zr̂. (2.11)

Since the functiong together with its first derivatives are continuous, denoting byg0 the
value ofg at the nucleus, we get from equations (2.7) and (2.11) that

lim
ε→0

Iε = 4πg0Z. (2.12)

Taking the limitsε going to zero andR going to∞ in (2.4), and using (2.5), (2.10), (2.12)
and (2.8) we get

φ0

∫
1g d3x >

∫
(4πgρ − ρ2/31g) d3x + 4πg∞(Z −N)− 4πg0Z. (2.13)

(Notice that now the integrals are performed over the whole space.) Sinceρ, g and1g are
non-negative

4πgρ − ρ2/31g > − 1

108π2

(1g)3

g2
. (2.14)

To obtain the right-hand side of equation (2.14) we just minimize the left-hand side with
respect toρ. Equality is obtained in (2.14) for allx if and only if g satisfies the equation

1g = 6πρ1/3g. (2.15)

We will denote byĝ the positive solution to (2.15), which is unique up to a multiplicative
constant. (A proof of the existence and uniqueness ofĝ as well as other mathematical
aspects related to the variational characterization ofεF(N,Z) is given elsewhere [11].)

From equations (2.13) and (2.14) we finally get the desired lower bound onφ0, namely

φ0 >
(∫

1g d3x

)−1(
4πg∞(Z −N)− 4πg0Z − 1

108π2

∫
(1g)3

g2
d3x

)
. (2.16)

To conclude with the proof of the variational characterization ofεF(N,Z) (or, equivalently
of φ0), we need only show that equality is attained in (2.16) ifg = ĝ. As we remarked
above, equality is attained in (2.14) ifg = ĝ. On the other hand,̂g is harmonic outside the
support ofρ, sinceĝ is a solution of (2.15) (i.e.1ĝ = 0 wheneverρ vanishes). Hence, if
g = ĝ equation (2.3) becomes an equality. Therefore, ifg = ĝ, (2.16) becomes an equality
and theorem 1 follows. �
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The Thomas–Fermi model has simple scaling properties. In particular, the natural length
scale isZ−1/3 [5, 6]. These scaling properties imply that in the atomic case one can write

εF(N,Z) = Z4/3εF(n) (2.17)

with εF(n) ≡ εF(N/Z, 1). This fact can be easily recovered from our variational principle,
by introducing trial functions of the formg(x) = h(Z1/3x). If we introduce such ag
in (2.16), and if we writeεF(N,Z) = Z4/3εF(n), with n = N/Z, then the bound (2.16)
becomes a bound onεF(n), which reads as follows:

−εF(n) >
(∫

1h d3x

)−1(
4πh∞(1− n)− 4πh0− 1

108π2

∫
(1h)3

h2
d3x

)
. (2.18)

This is the form that we will use in sections 3 and 4. Of course this bound is saturated for
an appropriateh satisfying an equation analogous to (2.15).

With respect to the proof of theorem 2, which we omit here (see [11] for details), the
idea is the same as in the proof of theorem 1, except that now we have to cutk small balls,
one around each nucleus, and we have to consider a ball of radiusR that encircles all the
nuclei. Eventually the radii of the small balls go to zero, and now one picks one boundary
term from each nuclei of the formgjzj , wheregj is the value ofg at the nucleusj . On the
other hand, asR goes to infinity (while keeping all the nuclear charges inside) one picks a
boundary term proportional tog∞(Z −N). However, nowg∞ is the limit of the spherical
average ofg over the ball of radiusR asR goes to infinity, sinceg does not need to be
spherically symmetric.

Before closing this section we would like to remark on the meaning of the function
g that saturates the variational bound (i.e. the functionĝ). It turns out thatĝ is (up
to a multiplicative constant) the derivative ofφ − φ0 with respect to the number of
electronsN . This can be seen formally by taking the derivative of the TF equation
(1φ = 4π max(φ − φ0, 0)3/2) with respect toN and checking that the derivative ofφ − φ0

with respect toN satisfies precisely equation (2.15). A rigorous proof of this fact is presented
in [11].

3. Chemical potential for a weakly ionized atom in the Thomas–Fermi model

The behaviour of the chemical potentialεF(N,Z) for a weakly ionized atom in the TF
model (i.e. asN approachesZ from below) has been considered by several authors in the
past 20 years. Lieb and Simon ([4], theorem IV.11, p 81) found upper and lower bounds
for εF(n) for both the atomic and the molecular case. In the units we are using in this paper,
they proved that

−0.6496. . . = −
(
π2

36

)1/3

6 lim sup
n→1

εF(n)(1− n)−4/3 6 −3

4

(
π2

36

)1/3

= −0.4872. . . (3.1)

and conjectured that limn→1 εF(n)(1− n)−4/3 exists ([4], problem 5, p 33). This conjecture
was proved by B́enilan and Bŕezis [12, 13]. Although B́enilan and Bŕezis did not compute
the numerical value of this limit explicitly, they characterized it as the value at 1 of the
solution of some nonlinear explicit ordinary differential equation on [0, 1] taking the value
0 at 0. We have solved the ordinary differential equation of Bénilan and Bŕezis numerically
(using Maple) finding the value−0.5282. . . for this limit. Dmitrieva and Plindov using
asymptotic expansions ([14, 15]) showed that in the neighbourhood ofn = 1

εF(n) ≈ −0.1103(1− n)4/3[1+ 0.9102(1− n)σ/3+ · · ·] e
2

a0
(3.2)
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where σ = (
√

73− 7)/2 ≈ 0.7720 anda0 is the Bohr radius. In the units we are
using here,a0 ≈ 0.208 97, and the numerical constant of Dmitrieva and Plindov becomes
0.1103e2/a0 = 0.5278, in excellent agreement with the exact value of Bénilan and Bŕezis.

Again, using asymptotic expansions (but keeping only the first-order correction in the
screening function of a neutral atom) March [16] showed that

εF(n) ≈ −2

3

1

(3π2(7+ σ))1/3 (1− n)
4/3 e

2

a0
≈ −0.5206(1− n)4/3 (3.3)

in the units used here. The numerical constant in (3.3) is slightly lower (by about 1.3%)
than the value obtained by Dmitrieva and Plindov.

Here we will use the variational characterization ofεF(n), derived in section 2, to get
an upper bound onεF(n) suited in the neighbourhood ofn = 1 (i.e. for the weakly ionized
atom).

In order to obtain a good estimate forεF(n) in the vicinity of n = 1 we will use the
following

h(r) =
{
rα if r < R

h∞ − αRα+1/r if r > R
(3.4)

as a trial function in the variational principle given by (2.18). Hereα > 3 andR are free
parameters andh∞ = (1+ α)Rα. It is easy to check thath ∈ D. The justification of this
choice of trial function, together with the approximate meaning ofα andR will be given
at the end of this section. An explicit computation, using (3.4) yields∫

1h d3x = 4παRα+1 (3.5)

and ∫
(1h)3

h2
d3x = 4π(α(α + 1))3(α − 3)−1Rα−3. (3.6)

Hence, using (3.5) and (3.6) together with the valuesh(0) = 0 andh∞ = (1+ α)Rα in the
variational principle (2.18) we get

−εF(n) >
1+ α
α

(1− n)R−1− 1

108π2

α2(α + 1)3

α − 3
R−4. (3.7)

Maximizing the right-hand side of (3.7) with respect toR we get

−εF(n) >
3

4
(27π2)1/3

[
(α − 3)(α + 1)

α6

]1/3

(1− n)4/3. (3.8)

The maximizingR, R̂ say, is given by

R̂ =
[
α3(1+ α)2

27π2(α − 3)

]1/3

(1− n)−1/3. (3.9)

Finally, in order to get the best possible lower bound on−εF(n) we maximize the right-hand
side of (3.8) with respect toα. The maximizingα, α̂ say, is given by

α̂ =
√

97+ 5

4
≈ 3.7122. . . . (3.10)

Replacing this value ofα in (3.8) we get

−εF(n) > 9π2/3 (17+√97)1/3

61+ 5
√

97
(1− n)4/3 ≈ 0.5243. . . (1− n)4/3. (3.11)
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The numerical constant on the right-hand side of (3.11) is within 0.6% difference from the
values of March (equation (3.3)) and Dmitrieva and Plindov (equation (3.2)). However, the
fact that the right-hand side of (3.11) is a lower bound to−εF(n) rules out the value of
March.

Before closing this section we would like to justify our choice of the trial functionh

given by (3.4). If the exponentα were exactly the positive root ofα(α + 1) = 18 (i.e.
α = 3+ σ = 3.772 0018. . .) our h would be the exact solution to equation (2.15) with
ρ given by the Sommerfeld formula [17] (i.e.ρ(x) = 27π−3/|x|6) which represents the
correct asymptotic behaviour of the TF density for the neutral atom. As it is natural to
expect, the optimal choice ofα, given by (3.10) is very close to 3+ σ = 3.7720. . .. On
the other hand, the optimal choice ofR given by (3.9) has precisely the right dependence
in n as the radius of the atom (i.e. the radius of the support ofρ) in the TF model [4].

4. Estimates on the chemical potential forN 6 Z

In this section we consider the behaviour ofεF(n) as a function ofn = N/Z for
0 6 n 6 1. As in the case of the weakly ionized atom, there are several results
in the literature concerningεF(n) for 0 6 n 6 1. Lieb and Simon showed that
εF(n) ≈ −(π2/4)2/3n−2/3 ≈ 1.8259. . . n−2/3 as n goes to 0 and determined upper and
lower bounds onεF(n) (see [4], theorem II. 31). Kobayashi [18] and Tal and Levy [19]
computed the functionεF(n) numerically for 06 n 6 1 and Dmitrieva and Plindov obtained
two analytic approximations (see [15], equations (9) and (11)) which are in good agreement
with the numerical values obtained in [18, 19].

In what follows we will exemplify the use of the variational principle given by (2.18)
together with simple trial functions to estimateεF(n) in the interval(0, 1).

Consider the trial function

h(r) =
{

1+ Br3/2− Crα if r 6 R
(D/r)+ h∞ if r > R

(4.1)

with h0 = h(0) = 1. Requiring continuity ofh(r), h′(r) and1h(r) at r = R implies

C = 15

4α(α + 1)
BR(3/2)−α (4.2)

D = −3(2α − 3)

4(α + 1)
BR5/2 (4.3)

and

h∞ = 1+ 5(2α − 3)

4α
BR3/2. (4.4)

Here,α > 3/2, R > 0 andB > 0 are variational parameters. It then follows from (4.1),
(4.2) and (4.3) that∫

1h d3x = 4πR2h′(R) = −4πD (4.5)

and

J (B,R) ≡ 1

4π

∫
(1h)3

h2
d3x =

(
15

4

)3

B3R3/2

×
∫ 1

0

y1/2(1− yα−(3/2))3 dy

(1+ BR3/2(y3/2− 15yα/(4α(α + 1))))2
. (4.6)
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Finally, using (4.4), (4.5), and (4.6) in (2.18), we obtain

−εF(n) > a(α)
(
−B−1R−5/2n+ b(α)R−1(1− n)− B−1

108π2R5/2
J (B,R)

)
(4.7)

with

a(α) ≡ 4(α + 1)

3(2α − 3)
(4.8)

and

b(α) ≡ 5(2α − 3)

4α
. (4.9)

There are two ways in which we will use (4.7) in the following. First, for a fixed value of
n, in the interval(0, 1), we maximize numerically the right-hand side of (4.7) as a function
of the parametersB, R andα to obtain a good lower bound on−εF. In order to compare
with [19] and [15] we choose the valuen = 0.550 28. Using Maple, we find that the right-
hand side of (4.7) is maximized approximately atα = 7.5, R = 0.655 andB = 4.4686.
At these values of the parameters the right-hand side of (4.7) is given approximately by
0.721 66. . . (in the units used here). The value of−εF(n), for n = 0.550 28, given by
Dmitrieva and Plindov [15] is 0.150 95/a0 ≈ 0.722 35 (recall that the value of the Bohr
radius in our units is 0.208 969. . .), while the numerical value obtained by Tal and Levy
at this particular value ofn is 0.151 04/a0 = 0.722 78. Our lower bound on−εF(n) is
therefore less than 0.16%, apart from the value of [15] and [19].

The second use we will make of equation (4.7) is to obtain a lower bound on−εF(n) just
in terms ofn. One can estimateJ from above by approximating by one the denominator
appearing inside the integral in the definition ofJ (i.e. in (4.6)). This is in fact a crude
estimate except for very low values ofn. Dropping in this way the denominator, allows us
to compute the integral. Thus we obtain

J

108π2
6 B3R3/2d(α) (4.10)

with

d(α) ≡ 1

π2

53(2α − 3)3

443α(α − 1)(4α − 3)
. (4.11)

Hence from (4.7) and (4.10) we get

−εF(n) > a(α)
1

BR5/2
(−n+ BR3/2b(α)(1− n)− B3R3/2d(α)). (4.12)

For fixedn andα the right-hand side of (4.12) can be easily maximized with respect toB

andR. The maximum occurs at

B =
(
b(α)(1− n)

6d(α)

)1/2

(4.13)

and

R = 3(2n2d(α))1/3

b(α)(1− n) . (4.14)

Replacing these values ofB andR in (4.12) gives the bound

−εF(n) >
1

6

a(α)b(α)2

(2d(α))1/3
(1− n)2n−2/3. (4.15)
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The prefactora(α)b(α)2/(2d(α))1/3 can be easily maximized with respect to the parameter
α. Using (4.8), (4.9) and (4.11) we observe that the maximum of this prefactor as a function
of α occurs atα = (11+√46)/5≈ 3.5564. . . and it is given by 1.8227. . . , so we finally
obtain

−εF(n) > 1.8227. . . n−2/3(1− n)2 (4.16)

for all 0 6 n 6 1. As we have seen in the previous section, the right-hand side of (4.16)
does not reproduce the correct behaviour ofεF(n) nearn = 1 (i.e. at the weakly ionized
limit). This is due to the coarse approximation we did when dropping the denominator
in the integral definingJ . On the other hand, for smalln, the dependence of the lower
bound inn is correct and the numerical prefactor we get is quite close to the exact value
(π2/4)2/3 ≈ 1.8259. . . proven by Lieb and Simon [4].
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